
RSS Team 5 Challenge Design Document
Eric Wieser1,2, Ernie Ho1, Shi-ke Xue1, Steven Homberg1, Winter Guerra1

Abstract—The project is a culmination of the work and
learning this semester about the provided racecar and ROS. The
racecar must autonomously navigate through MIT’s basement
tunnels and complete an obstacle course in the fastest time
possible. This is a race against other teams in two parts - the
robot is timed running the course on its own and also timed while
concurrently running the course with other teams’ racecars.

I. PROBLEM STATEMENT

The goal of the challenge is to enable a mobile robot plat-
form to efficiently traverse a static environment with known
map containing several unknown obstacles and targets.

The course the robot must traverse is in a portion of the
MIT tunnels below MIT, with flat ground and walls. This
provides a reasonably uniform environment for the robot to
traverse. Beyond the baseline of the tunnel, there are several
additional obstacles presented by the environment. People will
be standing at the side in various portions of the course, which
can alter the observed environment compared to that which is
expected based on the map. There are also cone-like obstacles
in the middle of the course in several places which the robot
must avoid.

Positive Goals

Reaching the end of the course through the tunnels as fast
as possible is the ultimate goal of the challenge. In addition
to completion of the course, there are colored targets on the
ground which, if touched by the robot, will increase the robot’s
score.

Negative Goals

Colliding with one of the cone-like obstacles placed on the
course results in a penalty to the robot’s score.

Although not explicitly penalized, other crashes, for exam-
ple with the walls, decrease the robot’s score by postponing
the completion of the goal.

II. ASSUMPTIONS

• We have “instantaneous” control of the car’s angular ve-
locity using the steering. This simplifies the RRT motion
update steps and simplifies the generation of valid paths
without greatly adversely affecting performance.

• We assume that every path generated by the RRT is
traversable regardless of the speed at which we are
traveling. This helps simplify our path generation as the
RRT can ignore speed as a variable. This is accomplished
by constraining our motion update to the lower bound of
our steering capabilities at speed.

1Massachusetts Institute of Technology, EECS
2University of Cambridge

• We assume from previous experience that our ZED cam-
era will give us data that is outdated by half a second
or more and also has a slow update time of 5HZ or
so. Therefore, we assume that we will have to use tf’s
time travel features to allow our sensor processing suite
to work correctly.

• We also assume that our high level planner has a rea-
sonably high probability of latency. Therefore, lower
level path following algorithms should be able to “fast-
forward” or ignore path data that is outdated or already
traversed.

III. SOFTWARE ARCHITECTURE

Our software architecture divides units of functionality into
separate ROS nodes, maintaining reasonable computational
efficiency while respecting division of labor.

At the lowest level, ROS wrappers run the drivers to interact
with the hardware, including the laser scanner, VESC, and
ZED stereo camera. These wrappers were developed by the
hardware providers or the staff.

On top of this, AMCL runs to provide higher level nodes
information about the robot’s pose. Most of the abstract
behaviors require this, as they are coordinating the robot’s
interaction with the world.

The next level of functionality includes nodes which pass
messages to and from the driver nodes and access world
transformation information to provide an interface for more
advanced behavior to the higher level abstract nodes. The
path follower node converts a sequence of pose goals in the
environment and information about the robot’s location to the
requisite sequence of inputs to the ackermann command mux
to allow the robot to achieve these poses. To convert ad-hoc

Fig. 1: Information flow in the ROS architecture

obstacle information to a usable form, the local mapping node
converts the laser scan and information about the robot’s loca-
tion to occupancy information in the world frame. The marker
detection node uses the ZED camera’s input to calculate the
relative location of markers.

Above these nodes, the RRT local planner takes occupancy
information from the global and local maps as well as the
robot’s location and produces a sequence of pose goals for
the path follower to use to move the robot to the target
location. The top-level planner takes information about the
robot’s location and marker location to produce a sequence of
local goals for the RRT local planner to achieve.

IV. TECHNICAL APPROACH

A. Vision (Ernie)

The vision task is using camera to recognize the orange
triangle cone and green rectangle markers in front of the robot.
Its optional to recognize people and other robots as well. There
are several problems while attacking this problem. One of the
main problems is that the color of obstacles might change
depending on different environments. For example, the light
green might turn into dark green if the light source is not
enough. Therefore, instead of setting the RGB range value
manually, we collect many obstacles’ pixel color combina-
tions in real life by recording the obstacles under different
brightness. Fig. 2 shows the set of pixel colors recorded from
the marker. In fact, it was what we did in lab4- extract the
obstacles pixel color under different brightness and look it up
while the new image comes. Here are the details about how we
implement this program. First, we record the bag of obstacles.
Second, we extract the obstacles pixels color into arrays. Third,
when new image is captured, we scan the image and look up
whether there is any pixel with same color in the arrays. If so,
we return where the pixels are and locate them as obstacles.
After knowing the position of obstacles in the images, we
calculate the real world relative position from the car to the
obstacles base on the information from zed camerainfo, which
includes information P matrix ,the multiplication of intrinsic
and extrinsic matrix. After multipying the P matrix with the
x, y obstacles’ pixel coordinates in the images, we can get
the x(rightward), y(upward), z(forward) distance value from
the car to the obstacles. Then we can wrap these position
information into messages, and publish them into driver node.
Moreover, we also can use NVIDIA visionworks to accelerate
the obstacle recognition or learning approach to recognize
obstacles.

B. Localization and Mapping (Steven)

In order to understand the environment, the robot must both
know where it is in the environment, and the occupancy of
the relevant parts of the environment. The laser scanner data
in conjunction with the odometry estimates computed by the
motor controller should provide the required information to
infer these.

In the environment of the challenge, most of the surround-
ings is known prior to the run, while there are some obstacles

Fig. 2: A plot showing the regions of RGB color-space which
are considered marker-like

(a) From simulation. Notice how
few features this map provides
for AMCL scan matching.

(b) From hector_slam using
added environment features. No-
tice the noise and slight loop clo-
sure issues.

Fig. 3: Maps of the tunnels

which are not known until detected online. Thus, the task
of understanding the environment contains some elements
of simple localization, and some elements of mapping. This
means that a localization algorithm is not sufficient for the
task, while a SLAM algorithm is unnecessarily powerful.

We will use AMCL to localize with respect to the global
map (see Fig. 3 for an example map). In order to understand
the ad-hoc obstacles, a local occupancy grid relative to the
well-localized robot is created. Laser scan ranges are projected
into the global frame and the resulting occupancy grid is
published, and the planner efficiently integrates the local and
global maps to use for planning. To avoid the computational
cost of ray-tracing and to ensure that the known walls are
in the correct place, the tips of the scans only are treated as
occupied and overlaid in the map.

AMCL is a ROS c implementation of particle filter local-

Fig. 4: The transformations along the tree from scan to map
indices are precomputed and efficiently applied using numpy
arrays.

ization. With input from the odometry published by the VESC
as well as the laser scanner, iterative updates are applied using
scan-matching on the pre-computed map of the tunnels to
estimate the robot’s pose. The node publishes the estimate as a
tf transform from the map frame to the odometry frame, thus
acting as a periodically updated correction to the imperfect
odometry. The tf tree then allows the local mapping node to
calculate the transformation from the scanner frame to the map
frame through odometry, and behaves reasonably even when
the odometry updates more frequently than the particle filter.

In order to efficiently implement local mapping, the trans-
formation from the laser frame to the global map indices is
precomputed with information from tf and the map’s resolution
information. This transformation is then applied to the laser
scan points with numpy vectorization. The occupancy grid is
limited to the points which lie in a small square around the
robot’s location in order to reduce the cost of publishing the
map, and the local map grid squares are aligned to those of
the global map for rapid integration to the global map on the
planner’s side.

C. Low-level Path planning (Eric)

To find obstacle-free paths between the car’s location, and
its goal, we use a Rapidly-expanding Random Tree (RRT)
algorithm. As this algorithm is probabilistically complete, it
is guaranteed to (eventually) find a path if one exists. It works
by iteratively builds a tree of possible paths, on each iteration
sampling a random point and connecting it to the nearest point
on the tree.

It needs to be ensured that all the paths generated by the
RRT are feasible, i.e. fall within the constraints imposed by an
Ackermann-steered car. This is equivalent to stating that any
path through the tree must be decomposable into a series of
tangentially-smooth circular arcs, all of which have a radius
that must be greater than the minimum turning radius of the
car1.

With this in mind, there are two good candidates for edge
representations in the RRT: circular arcs, and pairs of arcs
joined into S-shaped curves, as in Fig. 5. In both cases, our
tree nodes are poses of x,y,θ . Circular arcs are able to uniquely
connect a pose ps,θs to a point pd , whereas an s-curve is able
to connect a pair of poses, ps,θs and pd ,θd . Note however,

1determined experimentally to be roughly rmin = 0.6m

ps,θs

c
r

pd
φ

(a) Circular arcs

ps,θs

r1

r2

c1

c2

pd ,θd

φ1
φ2

(b) S-shaped curves

Fig. 5: Possible choices for RRT edges (red) between two
states (blue), and their parameterizations.

that even after this constraint, the S-curve has a remaining
degree of freedom.

Due to time constraints, we chose to use the simpler circular
arcs as our edges. It’s worth noting this is not suitable for an
RRT* algorithm, since that requires us to find paths between
two poses when rerouting, not just a pose and a point. This
choice also removes our ability to specify a goal orientation
from the RRT.

Having chosen our edge type, we want to be able compute
all of the properties shown in Fig. 5a. We start off by finding
a direction vector pointing left, which allows the center of the
circle to be expressed:

let vleft =

[
−sinθp
cosθp

]
=⇒ c = ps + rvleft

Noting that ps and pd lie on the same circle,

‖ps− c‖= ‖pd− c‖
=⇒ r2 = ‖pd−ps− rvleft‖2

= ‖pd−ps‖2−2rvleft · (pd−ps)+ r2

=⇒ r =
1
2
‖pd−ps‖2

(pd−ps) ·vleft

where it is worth noting that r is signed, with positive values
indicating that the circle’s center is to the left. This allows us
to find c, from which the signed angle φ can be found,

φ = arctan2((ps− c)× (pd− c),(ps− c) · (pd− c))

Where “×” here is the 2D generalization of the vector cross
product, yielding a scalar. Finally, this allows us to calculate
two important properties:

distance(ps,θs,pd) =

{
|φr| if |r|> rmin

∞ otherwise

θd = θs +φ

The first of these is the path length of the arc, our distance
metric for use in the RRT. The second is the resulting robot
orientation after navigating the arc, which we need to compute
to convert our destination point into a pose before appending
it to the tree.

q

v1

v2

v3

v4

& =

Fig. 7: Rasterizing the car footprint for collision detection

Another task that the RRT must perform is collision detec-
tions. One approach would be to transform the map from world
space to task space. This approach suffers from discretization
errors, and processing time, if it must be recomputed every
time the map updates. Instead, we do collision detection on a
rectangular model of the robot as in Fig. 7, by cropping the
map to the bounding box of the robot, and creating a mask
wherea a pixel q is shaded iff (q−vi)× (vi+1−vi)≤ 0 ∀i.

This mask can then be compared against the underlying
map, and any collision detected.

One final concern with the RRT is efficiency. We used
the builtin python cProfile module along with a third-
party visualizer snakeviz2 to find bottlenecks in our im-
plementation, and then used numpy’s vectorization to speed
up these sections of code. To store the tree, we required
a custom implementation of an arraylist, a sequence data
structure that reallocates memory whenever it comes close
to filling up, backed by a np.ndarray. This required very
careful memory management, so as not to leave pointers to
old data dangling when the buffer is reallocated.

Fig. 6 shows some visualizations of paths found by the RRT.
For testing, we used the navigation tools built into rviz to
feed the RRT with start and end points.

D. High-level Path planning (Shi-Ke)

At a higher level, path selection is determined not just
by distance but by the speed it takes to traverse the path.
Although cones and markers each penalize or reward time,
it is not necessarily the correct strategy to always path to
avoid cones or to chase markers. A higher level strategy

2https://jiffyclub.github.io/snakeviz/

needs to take into consideration the trade-offs for avoiding
or approaching the two targets in terms of time. With the
updated race design, plowing through cones is no longer a
correct strategy - however, the same consideration still needs
to be applied to markers.

It’s possible that a cone is detected too late to route around
without significant time loss, such as if one is spotted right as
the racecar turns a corner. Similarly, it’s possible for markers
to be detected too late to feasibly change route to cross over
them. As a result, the high level path planner must weigh the
costs of missing a marker or hitting a cone against the cost
of decelerating to pass over a marker or avoiding a cone. Of
course, this cannot be applied to all obstacles - the car should
avoid all other obstacles whenever possible.

Other than this consideration, the high level planner just
needs to generally keep track of the overall path that needs
to be followed by the local planner and ensure that the local
planner continues as expected. If the local planner becomes
lost, then information is gathered from the LaserScan and the
robot attempts to continue towards open space in the same
general direciton.

E. Path following (Winter)

To optimize the speed at which our car runs the course,
we would like our path follower control system to be tightly
connected to our higher level RRT path planner. To do this, it
should try its best to follow the exact path the RRT outputs
and also output signals describing the robot execution state.

Since our RRT will only output paths that are feasible for
our control dynamics, the technical specifications of the path
follower are clear. Our path follower must be able to follow
provided paths with the highest degree of accuracy possible,
while also intelligently dealing with localization error and
upstream path-planning latency.

We’ve already proven in simulation tests that our path
follower tracks low resolution tracks to an acceptable degree of
accuracy. We have confirmed that the previous iteration of the
path follower algorithm can guide a robot around a simulation
track. However, our current outstanding concerns are with the
handling of real-world errors.

Since we are using AMCL for our localization in the
real-world, we expect that our robot pose belief to not be
continuous. That is, we expect that AMCL will update our

Fig. 6: Test runs from the RRT. Green is the final path, yellow edges explored forwards, and cyan the edges explored reversing.
Note the suboptimal reversing path found on the right - a basic RRT makes no optimality guarantees.

https://jiffyclub.github.io/snakeviz/

robot pose based off of laser scan matching in an unpredictable
way. This means that our path follower should be able to
handle the robot pose unexpectedly jumping around the map
in an intelligent manner.

Put simply, there are 2 cases we need to handle: either the
robot has jumped off the path, or has jumped back on the
track. In the case where the robot has jumped off the track,
the path follower should keep the target waypoint constant
until the robot converges on the path. This triggers the second
condition.

In the second condition, the robot has reentered the path,
but may be further behind where we previously expected it
to be. To fix the issue, we “fast-forward” our playback of the
path until we find a waypoint that the robot has not yet moved
to. Then playback of the path resumes in the usual way.

As an added benefit of our “fast-forwarding” error correc-
tion method, we can handle latency upstream in a graceful
manner. For example, let the robot be in motion executing
a path. Then, a new path (perhaps to hit a newly detected
marker) comes in from the RRT. Since the robot is in motion,
the robot is well past the start point of the path. Therefore, to
correct the situation, we simply “fast-forward” path playback
until we find a waypoint that is in an unexecuted portion of
the path. This method allows us to dynamically handle path
changes while also considering for real-world factors such as
planning latency and localization error.

V. CAPABILITY MILESTONES

May 4 Dry run - Navigate the course with the RRT path
planner to move toward open space. 3

May 7 Navigate the course using localization and the
RRT planner; detect markers.

May 9 Navigate the course with obstacles, using high-
level planner to pass over markers.

VI. DECISION MAKING PROCESS

The general decision making process for both how to divide
work and for our implementation for the final project has been
to communicate important decisions during team meetings.
General consensus or at least agreement can be reached on
major decisions - minor issues can be talked about online
through Slack.

Technical decisions were motivated by a balance between
effectiveness and ease of implementation. Given the goal
that the robot should be robust even to difficult obstacle
configurations which would likely not appear in the challenge,
we decided to focus on giving the robot a strong ability to
plan and designed the rest of the infrastructure to provide
the necessary abstractions for this as efficiently and simply
as possible.

3Partially completed. On May 4th, we were able to use the RRT planner
to traverse short paths while avoiding obstacles. However, work still needs to
be done to the path-follower node since execution of tough-to-traverse paths
would sometimes ’hang’.

Division of labor

In order to keep track of which tasks are assigned to which
people, we will use github issues. This allows us to label tasks
by the technical topic they pertain to, so we can see which
groups of tasks are falling behind and need more people.

The current mapping of tasks to people is:
Eric:
• Improve performance of the existing RRT code.
• Augment the RRT code to allow replanning from an

existing tree.
Ernie:
• Detect the cones, markers.
Shi-ke:
• Implementation of RRT*.
Steven:
• Optimize AMCL performance on-robot.
• Implement local-grid mapping.
Winter:
• Upgrade path follower code to be robust in the face of

real-world errors and latency.
• Implement a high-level course planner such that emits a

series of high-level goals for the RRT to traverse towards.
This node is higher level than the cone detector node.

VII. SELF-ASSESSMENTS

Steven

Technical: Over the course of the labs, I gained an ap-
preciation for the computational constraints that arise when
implementing things. Thinking about algorithms is something
I have a lot of experience with, but figuring out how to speed
up constants when actually writing code to execute them was
a new experience. I also learned more about managing my
code while working in a team.

Communication and Collaboration: The most impactful
thing I learned in terms of communication was how to effec-
tively convey information with slides in a presentation. I didn’t
have much experience with genuinely trying to get people to
understand something technical through a presentation, so the
tips about formatting slides were quite informative.

Winter

Technical: During 6.141, I learned how to work on complex
software architectures as part of a team. Although working as
a team to develop software architectures sounds easy, it in-
volves a lot of intercommunication, specifications, and system
design something that I did not have a lot of experience in.
Additionally, I also learned how to use ROS for the first time.

Communication and Collaboration: Building a robot with
a team requires a lot of team communication about system
design, tradeoffs, timelines, and feasibility. In 6.141, I learned
how to improve my communication such that I could integrate
needs from my teammates into my work while also commu-
nicating my needs to the team.

Shi-Ke

Technical: The bulk of the technical difficulty has been
adapting to new architectures such as ROS. On top of learning
new workflows for working with ROS, the algorithms taught
in class have been a great experience both to learn and to
implement in the labs.

Communication and Collaboration: Having taken 6.UAT,
I felt pretty comfortable with individual presentations but I
have not had much experience with group presentations, which
are very different. 6.141 contributed greatly to my experience
doing these types of presentations. Additionally, this was the
first group that I had used Slack with, which was a valuable
collaboration experience as well.

Ernie

Technical: 6.141 gave me a chance to integrate the knowl-
edge of hardware and software and build the complex system
cooperatively which I seldom experienced before. I realize
how important to document the code and organize the issues
to work as a team.

Communication and Collaboration: I learnt some basic
concept of project management before but didn’t find a good
tool before. In 6.141, we use slack and github as com-

munication tool and I think they are the best combination
communication tools which help me keep track not only the
conversation but also the progress.

Eric

Technical: 6.141 has introduced me to the ROS infrastruc-
ture, and taught me alternate ways of structuring complex
systems. It’s provided me with great opportunities to work on
the implementation of algorithms I’ve learnt about in previous
classes. Having to profile and optimize code is a learning
experience for me, as it’s something I’ve not had to think
about before. It’s also allowed me to contribute to open-
source projects at all depths of the stack, from the zed drivers,
through the ROS codebase, and even up to numpy itself. On
the flipside, it’s reduce my confidence in open source software
working perfectly all the time!

Communication and Collaboration: It’s been a while since
I’ve had to do a group presentation, so this has been valuable
to me. 6.141 has also acted as a very effective trial run of
Slack, a tool I previously dismissed as not solving a problem
that I had. I now consider it part of my toolbox, and will aim
to use it in future group projects!

	Problem statement
	Assumptions
	Software Architecture
	Technical approach
	Vision (Ernie)
	Localization and Mapping (Steven)
	Low-level Path planning (Eric)
	High-level Path planning (Shi-Ke)
	Path following (Winter)

	Capability milestones
	Decision making process
	Self-assessments

