
RSS Team 5 Challenge Design Outline

Eric Wieser1,2, Ernie Ho1, Shi-ke Xue1, Steven Homberg1, Winter Guerra1

Abstract— The project is a culmination of the work and
learning this semester about the provided racecar and ROS. The
racecar must autonomously navigate through MIT’s basement
tunnels and complete an obstacle course in the fastest time
possible. This is a race against other teams in two parts -
the robot is timed running the course on its own and also
timed while concurrently running the course with other teams’
racecars.

I. PROBLEM STATEMENT

The goal of the challenge is to enable a mobile robot plat-
form to efficiently traverse a static environment with known
map containing several unknown obstacles and targets.

The course the robot must traverse is in a portion of the
MIT tunnels below MIT, with flat ground and walls. This
provides a reasonably uniform environment for the robot to
traverse. Beyond the baseline of the tunnel, there are several
additional obstacles presented by the environment. People
will be standing at the side in various portions of the course,
which can alter the observed environment compared to that
which is expected based on the map. There are also cone-
like obstacles in the middle of the course in several places
which the robot must avoid.

Positive Goals

Reaching the end of the course through the tunnels as fast
as possible is the ultimate goal of the challenge. In addition
to completion of the course, there are colored targets on
the ground which, if touched by the robot, will increase the
robot’s score.

Negative Goals

Colliding with one of the cone-like obstacles placed on
the course results in a penalty to the robot’s score.

Although not explicitly penalized, other crashes, for exam-
ple with the walls, decrease the robot’s score by postponing
the completion of the goal.

II. ASSUMPTIONS

• We have “instantaneous” control of the car’s angular ve-
locity using the steering. This simplifies the RRT motion
update steps and simplifies the generation of valid paths
without greatly adversely affecting performance.

• We assume that every path generated by the RRT is
traversable regardless of the speed at which we are
traveling. This helps simplify our path generation as
the RRT can ignore speed as a variable. This is accom-
plished by constraining our motion update to the lower
bound of our steering capabilities at speed.

1Massachusetts Institute of Technology, EECS
2University of Cambridge

• We assume from previous experience that our ZED
camera will give us data that is outdated by half a
second or more and also has a slow update time of 5HZ
or so. Therefore, we assume that we will have to use
tf’s time travel features to allow our sensor processing
suite to work correctly.

III. TECHNICAL APPROACH

A. Vision (Ernie)

Using camera to recognize the cone and markers in front
of the robot. It is optional to recognize people and other
robots as well. Basically we use lab4 approach to detect the
cone. We are going to use OpenCV as a tool to recognize
the obstacles based on their features (color and shapes).
Alternatively, we can use NVIDIA visionworks to accelerate
the obstacle recognition or learning approach to recognize
obstacles.

B. Localization and Mapping (Steven)

In order to understand the environment, the robot must
both know where it is in the environment, and the occupancy
of the relevant parts of the environment. The laser scanner
data in conjunction with the odometry estimates computed by
the motor controller should provide the required information
to infer these.

In the environment of the challenge, most of the surround-
ings is known prior to the run, while there are some obstacles
which are not known until detected online. Thus, the task
of understanding the environment contains some elements
of simple localization, and some elements of mapping. This
means that a localization algorithm is not sufficient for the
task, while a SLAM algorithm is unnecessarily powerful.

Our decision between an approach involving localization
augmented with mapping and an approach applying SLAM
will be motivated by performance. We will test whether
Monte-Carlo localization, as implemented in the AMCL
package, is able to effectively localize the robot in the tunnel
in the presence of some obstacles not present in the map,
including cones or similar obstacles in the middle of the path
as well as people standing on the sides, possibly blocking
off significant map features like side-corridors. If it does
localize the robot well, then mapping the obstacles relative
to the well-localized robot is not computationally expensive.
We will test alternatives for the method of conducting this
mapping, including full ray-tracing or the more simplistic
method of treating cells as occupied only if one of the laser
scan ranges lies in that cell.



Alternatively, if AMCL is not able to localize the robot as
computationally efficiently or as robustly as using the hector-
slam package online, then simply using that will serve to both
localize the robot and detect previously unexpected obstacles.

Finally, the robot will ideally be able to determine the
type of obstacle it is facing for planning purposes. If faced
with a complicated maze of cones, it may be the case that
it is beneficial to our score to plow through a cone and save
time rather than spending time planning the way through
the maze. Cones can be treated like this, but other obstacles
like walls, people, and other robots cannot, so making these
planning decisions requires a more involved type of obstacle
detection. If we find that it is reasonably easy to do this,
either based on the size or shape of the perceived obstacle
in the laser scan or based on other sensor input like the
camera, then we will do so.

C. Low-level Path planning (Eric)

In lab6, we used an RRT that found statically achievable
paths between points - that is, paths which follow arcs that
an ackermann car is able to drive on. Unfortunately, this RRT
was slow to converge, and as is the nature of RRTs, did not
always produce optimal paths. Since the final project is a
race, optimality is of interest to us.

To improve convergence, we need to adjust our distance
metric and sampling routine, and profile our code. It’s
entirely possible that our choice of these two functions has
resulted in a degenerate RRT algorithm which is no longer
probabilistically complete. Analyzing this is probably out
of scope for this class, but reading some papers to see
how else it’s been done could provide insight. Profiling has
already been effective at locating bottlenecks, but there’s still
efficiency to be gained. We should consider switching to
using C++ or at least Cython to provide speedups as well.

To improve optimality, we should consider implementing
RRT*. Care must be taken to use the right version of
optimality - distance- and time-optimality are not the same
thing when dynamics are taken into account. Again, the
race factor makes time-optimality desirable, so the RRT
implementation needs to understand the robot dynamics.
We’ll assume that modeling forwards velocity is enough, and
stick with our assumption that the steering assembly turns
instantaneously.

D. High-level Path planning (Shi-Ke)

At a higher level, path selection is determined not just
by distance but by the speed it takes to traverse the path.
Although cones and markers each penalize or reward time,
it is not necessarily the correct strategy to always path to
avoid cones or to chase markers. A higher level strategy
needs to take into consideration the trade-offs for avoiding
or approaching the two targets in terms of time.

It’s possible that a cone is detected too late to route around
without significant time loss, such as if one is spotted right as
the racecar turns a corner. Similarly, it’s possible for markers
to be detected too late to feasibly change route to cross over
them. As a result, the high level path planner must weigh the

costs of missing a marker or hitting a cone against the cost
of decelerating to pass over a marker or avoiding a cone.
Of course, this cannot be applied to all obstacles - the car
should avoid all other obstacles whenever possible.

E. Path following (Winter)

To optimize the speed at which our car runs the course,
we would like our path follower control system to be tightly
connected to our higher level RRT* path planner. To do this,
it should try its best to follow the exact path the RRT outputs
and also output signals describing the robot execution state.

In our previous implementations of our path follower
node, we described the goal path using a list of positional
waypoints. However, this representation of our path did
not take into account the physical dynamic limitations of
an Ackermann controlled car and ran into issues of slow
convergence to the desired path when waypoints were spaced
far apart. To resolve this issue, we are going to upgrade
our path follower node to take in a list of arcs that are
calculated by the RRT motion update step. We are then
going to interpolate this list of arcs to create a completely
defined path for the robot to follow. This upgrade in path
representation should allow our robot to more faithfully fol-
low detailed paths around complex obstacles without creating
much computational overhead.

Lastly, to optimize our computation time effectively, we
will also make sure that our path follower node reports back
detailed path progress metrics to the RRT* node such that
this data can be used to prune old upstream paths and speed
up the path searching process. Additionally, the outputted
path completion metrics could also be used upstream in
the RRT* node for optimizing paths using predictive state
lookahead.

IV. CAPABILITY MILESTONES

April 20 Baseline functioning robot which completes the
course with no obstacles, either by localizing and
following a predefined path or following a wall.

April 27 Navigate the course with localization and the
RRT path planner in the absence of obstacles;
detect markers

May 4 Dry run - Navigate the course with obstacles;
RRT* working in simulation

May 9 Navigate the course with obstacles, using high-
level planner to pass over markers.

V. DECISION MAKING PROCESS

The general decision making process for both how to
divide work and for our implementation for the final project
has been to communicate important decisions during team
meetings. General consensus or at least agreement can be
reached on major decisions - minor issues can be talked about
online through Slack.



Division of labor

In order to keep track of which tasks are assigned to
which people, we will use github issues. This allows us to
label tasks by the technical topic they pertain to, so we can
see which groups of tasks are falling behind and need more
people.

The current mapping of tasks to people is:
Eric:

• Investigate other RRT models.
• Improve performance of the existing RRT code.
Ernie:

• Detect the cones, markers.
• (Optional) Distinguish static obstacle (wall, feet) with

movable obstacles(robots, cones).
Shi-ke:

• Implementation of RRT* (with Winter).
Steven:

• Optimize AMCL performance on-robot.
• Finish implementing local-grid mapping.
• Find metric to distinguish wall-like obstacles from mov-

able obstacles.
Winter:

• Upgrade path representation in order to assure path
completeness.

• Help Shi-Ke implement and improve RRT* node.
• Integrate path following metrics with lookahead and

pruning capabilities of RRT* (with Shi-ke).

VI. SELF-ASSESSMENTS

Steven

Technical: Over the course of the labs, I gained an
appreciation for the computational constraints that arise
when implementing things. Thinking about algorithms is
something I have a lot of experience with, but figuring out
how to speed up constants when actually writing code to
execute them was a new experience. I also learned more
about managing my code while working in a team.

Communication and Collaboration: The most impactful
thing I learned in terms of communication was how to
effectively convey information with slides in a presentation.
I didn’t have much experience with genuinely trying to
get people to understand something technical through a
presentation, so the tips about formatting slides were quite
informative.

Winter

Technical: During 6.141, I learned how to work on
complex software architectures as part of a team. Although
working as a team to develop software architectures sounds
easy, it involves a lot of intercommunication, specifications,
and system design something that I did not have a lot of
experience in. Additionally, I also learned how to use ROS
for the first time.

Communication and Collaboration: Building a robot with
a team requires a lot of team communication about sys-
tem design, tradeoffs, timelines, and feasibility. In 6.141, I
learned how to improve my communication such that I could
integrate needs from my teammates into my work while also
communicating my needs to the team.

Shi-Ke

Technical: The bulk of the technical difficulty has been
adapting to new architectures such as ROS. On top of learn-
ing new workflows for working with ROS, the algorithms
taught in class have been a great experience both to learn
and to implement in the labs.

Communication and Collaboration: Having taken 6.UAT,
I felt pretty comfortable with individual presentations but
I have not had much experience with group presentations,
which are very different. 6.141 contributed greatly to my
experience doing these types of presentations. Additionally,
this was the first group that I had used Slack with, which
was a valuable collaboration experience as well.

Ernie

Technical: 6.141 gave me a chance to integrate the knowl-
edge of hardware and software and build the complex system
cooperatively which I seldom experienced before. I realize
how important to document the code and organize the issues
to work as a team.

Communication and Collaboration: I learnt some basic
concept of project management before but didn’t find a
good tool before. In 6.141, we use slack and github as
communication tool and I think they are the best combination
communication tools which help me keep track not only the
conversation but also the progress.

Eric

Technical: 6.141 has introduced me to the ROS infrastruc-
ture, and taught me alternate ways of structuring complex
systems. It’s provided me with great opportunities to work
on the implementation of algorithms I’ve learnt about in
previous classes. Having to profile and optimize code is a
learning experience for me, as it’s something I’ve not had to
think about before.

Communication and Collaboration: It’s been a while since
I’ve had to do a group presentation, so this has been valuable
to me. 6.141 has also acted as a very effective trial run of
slack, a tool I previously dismissed as not solving a problem
that I had. I consider myself now converted, and will aim to
use it in future group projects!


